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Abstract 
In X-ray crystallography, a least-squares structure refine- 
ment is used to two purposes: to prove the correctness of 
the proposed model and to improve it. In electron 
crystallography, the same tool would be desirable. 
However, the standard programs for least-squares 
structure refinement used in X-ray diffraction may give 
wrong results using electron diffraction data because the 
kinematically calculated diffracted intensity is not valid 
for the interaction of electrons and crystals thicker than 
about 20 A for strong scatterers. In this paper, a new 
approach is presented that overcomes this problem and in 
addition takes into account all the advantages contained 
in dynamic scattering. The multislice method, well 
known in high-resolution electron microscopy (HREM), 
was combined with a least-squares algorithm, resulting in 
the multislice least-squares (MSLS) procedure. Experi- 
ments show that the atomic positions obtained by the new 
procedure are of the same accuracy as those obtained 
from single-crystal X-ray diffraction. However, the size 
of the single crystals used is much smaller (diameters 
down to +100 A). Also, light-atom positions can be 
determined with high precision by using data sets from 
crystal areas with different thicknesses. The multislice 
refinement gave good results up to 150 to 400A 
depending on the composition of the crystal, with R 
values based on the intensities of less than 5%. An 
additional advantage of the approach is that some extra 
quantities (e.g. crystal thickness, crystal orientation) can 
be refined at the same time. 

1. Introduction 
At present, several advanced types of high-resolution 
electron microscopes operating at intermediate accelerat- 
ing voltages (200-400 keV) have a point-to-point 
resolution of about 1.8 A. For very thin specimens and 
at Scherzer focus, one can interpret dots down to this 
distance directly as atom columns. Information with 
spatial frequencies beyond this point-to-point resolution 
can exist in the images but this information is 
delocalized. In principle, the information extends to a 
limit, called the information limit of the microscope, 
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which is about 1.1 A for microscopes with a field- 
emission gun. The point-to-point resolution is governed 
by the spherical aberration of the objective lens, while the 
information limit is determined by a damping envelope, 
which depends on the energy spread of the primary 
electrons and the instability of the current of the objective 
lens. The typical approaches to extend the interpretable 
information down to the information limit of the 
microscope are: 

(i) The conventional method of extensive image 
calculations in which one calculates the images for a 
given model using the partly known microscope para- 
meters and comparing these with experimental images. 

(ii) The use of a much higher accelerating voltage 
(about 1 MeV) with a high-quality objective lens. In this 
case, the resolution of the images is only limited by the 
damping envelope of the microscope, since the theore- 
tical point-to-point resolution is close to or even beyond 
the information limit. 

(iii) Exit wave reconstruction methods initiated by 
Kirkland (1980) and developed by Van Dyck & Op De 
Beeck (1992) (through-focus method), Lichte (1991) 
(off-axis holography) and Kirkland, Saxton, Chau, Tsuno 
& Kawasaki (1995) (tilted-beam series), which allow 
direct interpretation up to the information limit of the 
electron microscope and possibly even beyond that 
(Kirkland et al., 1995). 

The information in diffraction space proceeds much 
further (e.g. 0.8 A is rather easy to achieve). This is 
because, in contrast with the image in real space, the 
diffraction information is not restricted by the aberrations 
of the objective lens or the chromatic aberrations. This 
also implies that the information at about 0.8 A can be 
collected by relatively cheap electron microscopes in 
diffraction mode. To acquire accurate integrated inten- 
sities, small diffraction spots coming from an illuminated 
area of uniform thickness is essential. A field-emission 
gun is ideal to achieve a small probe size, high brightness 
and an almost parallel beam. 

The drawback of diffraction information is that only 
the diffracted intensity can be recorded and not its phase. 
Thus, a structure cannot be determined from the 
intensities directly. The phases have to be measured or 
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estimated in some way. For X-ray diffraction by crystal- 
line material, several procedures such as direct methods 
and the Patterson method are available to solve this phase 
problem, which is typical for all diffraction experiments. 

Recently, some successful methods for ab initio crystal 
structure determination from electron diffraction data 
were reported. Dorset, Kopp, Fryer & Tivol (1995) use 
the Sayres equation to expand an initial phase set. With 
convergent-beam diffraction patterns, phases can be 
determined experimentally from overlapping discs 
(Midgley, Saunders, Vincent & Steeds, 1995; Zuo, Hoier 
& Spence, 1989). 

Another approach, not using diffraction data, is taken 
by the program CRISP (Hovmrler, 1992), which uses the 
phases determined from Fourier transforms of the 
corresponding HREM images. The images are sharpened 
by modifying the phase set to crystallographic allowed 
phases (e.g. 0 and rr for centrosymmetric space groups). 

Such ab initio methods only give a rough model of a 
possible structure, mostly because only some of the 
phases are correctly determined. The correctness of the 
resulting structural model has to be proven by comparing 
it with the measured data by, for example, a least- 
squares-refinement procedure, which is of common use 
in X-ray diffraction. 

However, the standard refinement programs, developed 
for X-ray diffraction, cannot be applied directly in the 
case of electron diffraction for two reasons: 

(i) Most of the reflections in a pattern along a zone axis 
are not exact in Bragg position. Thus, for each measured 
reflection, a correction is needed, which depends not only 
on the distance of the reflection to the Ewald sphere but 
also on the crystal thickness. 

(ii) Since the interaction of electrons with matter is 
strong, multiple scattering is a normal phenomenon for 
electrons. Therefore, the kinematical diffraction theory, 
which is a good approximation in X-ray crystallography, 
is no longer valid for electrons and the dynamical 
diffraction theory should be used. 

As far as we know, three approaches have been 
reported previously in which dynamical diffraction was 
taken into account in the refinement process. 

(i) Zuo & Spence (1991) used convergent-beam 
electron diffraction (CBED) to refine structure factors. 
From these structure factors, structural parameters were 
deduced. Vincent & Exelby (1995) use HOLZ and 
CBED to refine some structural parameters. These 
methods are limited to small unit cells owing to the 
effect that computing time increases exponentially with 
the number of variables to be refined and with the 
complexity of the convergent-beam patterns. 

(ii) Tsuda & Tanaka (1995) were able to refine a small 
number of parameters for SrTiO3 using convergent-beam 
patterns. It proved to work for rather thick crystals (in 
their example "-~200 A). This large thickness value is 
needed since it is essential to be able to estimate the 
actual thickness with convergent-beam techniques. The 

usefulness of this method is limited because of the huge 
calculation time. Since many CBED patterns have to be 
calculated, only a very limited number of parameters can 
be taken into account. More parameters will increase the 
computing time exponentially. At present, Debye-Waller 
factors of the three independent atoms were reported to 
be refined. 

(iii) Sha, Fan & Li (1993) proposed a different 
approach using normal diffraction patterns recorded with 
a more or less parallel illumination. They developed a 
method to correct the intensities obtained from this 
pattern for the dynamical effect using the knowledge of a 
rough atomic model. The method uses a multislice 
calculation to determine thickness. It is assumed that the 
same relation between kinematic structure factor and 
dynamic structure factor holds. In this way, a quasi- 
kinematical data set can be calculated, which can 
subsequently be used in a standard kinematical refine- 
ment procedure. By this method, better models can be 
found. A drawback is that the two procedures are used 
separately and that a wrong initial model may affect the 
results of the refinement. 

In this paper, we report a least-squares procedure that 
fully takes into account the dynamical diffraction within 
the refinement procedure. The advantage of this treat- 
ment is that, apart from the parameters related to the 
crystal structure, parameters such as crystal thickness, 
crystal orientation and absorption factor can be refined 
simultaneously. In fact, our method will be rather 
complementary to the CBED methods. Our method aims 
at thinner crystals and due to a faster calculation it can 
handle more parameters at the same time. 

2. Multislice least squares, the program MSLS 

We have developed a computer program, MSLS, to 
incorporate the dynamical diffraction theory into the 
structure-refinement process. The program combines two 
known algorithms: the multislice method (Cowley & 
Moodie, 1957) and a least-squares-fitting procedure. 

The multislice calculations in MSLS are based on our 
own computer program This procedure was tested very 
thoroughly. Comparison with other simulation programs 
yields the same results as many algorithms (Op De 
Beeck, 1996, 1997). The calculation takes into account 
both the curvature of the Ewald sphere and multiple 
scattering. Since the calculations are rather lengthy, we 
made some simplifications and approximations. High- 
order Laue-zone (HOLZ) lines were not included in the 
calculations. The program uses equal subslices of 
arbitrary size. A stable result can be achieved if the slice 
thickness is at most 1 A, depending on the scatterers in 
the crystal. By taking equal subslices, one assumes that 
the actual positions of the atoms along the zone axis can 
be approximated by an average scattering density along 
this axis. This is the same assumption as is made in the 
Van Dyck (1993) column approach. This column 
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approximation implies that the slice size is arbitrary. 
However, during calculation the cell dimension in the 
beam direction was an integer multiple of the slice size, 
except for the last slice. The reason for this last slice will 
be discussed later in this article. 

The least-squares algorithm is basically the linearized 
nonlinear algorithm that is in common use in crystal- 
lographic structure refinement (Giacovazzo et al., 1992). 
It tries to minimize an R factor defined by 

R =  y~{z°b"--I , ,}2/y~{I°b~} 2. (1) 

The main part of the algorithm is a set of linear equations 
for parameter shifts s: 

Ms = v, (2) 

where the refinement matrix is given by 

M o. = ~_, w,,,(Ol,,,/Opj)(3Im/3pi ) (3) 
m 

and the vector by 

Vi = E Win(Ira - -  I°U~)(OI,,/OPi) • (4) 
m 

1 °bs are the observed reflection intensities and Im are the 
calculated reflection intensities; p~ is the ith parameter to 
be refined and w,,, are the weights of the reflections. In 
theory, these weights should be 1/tY(/) 2, in which o'(/) is 
the standard deviation of the intensity. Unless the 
intensities depend linearly on the parameters, the process 
should be iterated until convergence is reached. 

The derivative of the intensity Im with respect to the 
parameters p; raises some problems. The multislice 
algorithm is an iterative process for which no analytical 
function is available. So the derivatives cannot be 
calculated analytically. In MSLS,  these derivatives are 
numerically calculated using the definition of the 
derivative 

r ( p )  = [i(p + 3) - i (p)] /3  (5) 

with 3 tending to zero. Numerically, one can only take a 
finite value for 3. However, 3 cannot be too small, owing 
to the accuracy of the computer. A too small 3 will cause 
a random difference between I(p + 3) and I(p) of the 
order of the numerical accuracy of the computer. In 
practice, this difference will tend to zero and leads to a 
singular least-squares matrix M. In the next section, the 
best values of ~ will be discussed. 

Just as in a traditional structure-refinement program, 
the parameters in M S L S  include atomic positions, 
Debye-Waller factors, scaling factors etc'. At the 
moment, only isotropic Debye-Waller factors are used 
Anisotropic temperature factors will increase the number 
of parameters in the least-squares procedure. In that case, 
the ratio of the number of parameters to the number of 
observed reflections will become worse. To get more 
intensities (from other zones) is limited due to experi- 

mental reasons: at present, all zones have to be selected 
and oriented by hand and sometimes it is hard to prepare 
samples to get the right orientations of the crystals. As a 
result of using the multislice method, some more 
parameters may be involved: the crystal thickness, the 
crystal misalignment and absorption parameters. The 
misalignment of the crystal is expressed in terms of the 
centre of the Laue circle in the pattern. A crystal tilt 
results in a corresponding shift of this centre. Note that 
crystal tilt and beam tilt are equivalent for diffraction 
patterns. Therefore, we do not consider beam tilt in this 
paper. 

The refinement of the thickness requires a special 
trick. The derivatives, I' [formula (5)], imply that the 
dependency of the intensity on the thickness is 
continuous. However, division of the crystal in as many 
slices as in the multislice calculation gives the thickness 
as a discrete parameter. If3 in (5) is smaller than the slice 
size, the resulting derivative will be zero in many cases 
since l(p + 3) and I(p) are equal owing to the calculation 
method. To overcome this problem, in M S L S  a crystal is 
divided in a certain number of equal slices and a last slice 
having a thickness of a fraction f o f  the other slices. It is 
assumed that this slice contains the same scattering 
potential as that of the other slices but multiplied by f 

Diffraction patterns may always be multiplied by a 
constant factor without changing the physics of the 
system. In MSLS,  this is a scaling factor that is needed to 
scale the observed and calculated intensities to the same 
order of magnitude. This scaling factor is one of the 
refinable parameters. However, one has to take care with 
the definition of this factor. It should be defined in such a 
way that it is not dependent on the change of any other 
parameter in the refinement procedure, in particular the 
crystal thickness and the absorption parameter. There- 
fore, the actual scaling factor, S, was expressed as a 
function of s, the parameter that was used in the 
refinement process: 

= s E I~bs /  Y~ I~ ~'c" (6) S 
H~O t H~O 

This results in the ideal case in a scaling factor s of 1.0. 
In order to get three-dimensional crystal structure data 

from an electron diffraction pattern, one zone is not 
enough in general, though for high-symmetry space 
groups one special zone may be sufficient. M S L S  allows 
for simultaneous refinement of several diffraction 
pattems, each with its own parameters for scaling, 
thickness and crystal alignment. 

3. Testing and optimizing the procedure 

The newly developed method was firstly tested on 
simulated electron diffraction data, which allowed 
complete control of the whole process. Since M S L S  is 
based on calculating intensities, we have chosen a 
simulation method that is different from the multislice 
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Table 1. Atomic model o f  LuNiBC used fi)r simulations 

Space group: P4/nmm. a = 3.49850, b = 3.49850, c = 7.75560 A, cr = 
90, f l = 9 0 , ) I = 9 0  ° . 

x y z B (A 2) 

Lu 1/4 1/4 0.16 2.5 
Ni 3/4 1/4 1/2 2.5 
C 3/4 3/4 0.15 4.0 
B 3/4 3/4 0.35 4.0 

algorithm in MSLS. The Bloch-wave method of the EMS 
package (Stadelmann, 1987) was selected for this 
purpose. 

Several structures containing equal atoms or contain- 
ing mixtures of heavy and light atoms were used, 
including e.g. LuNiBC (Table 1) and CPCN (Table 2). 
Thicknesses up to 120 A were tested. Misalignment of 
the crystal was limited to a few milliradians, which is 
common in experiments. 

All parameters refined to their true values within the 
margins expected due to numerical errors, except when 
thickness and Debye-Waller factors were refined simul- 
taneously. The correlation between thickness and Debye- 
Waller factors is addressed in detail in the Discussion. 
Each parameter needs a good guess as starting value. 
How close the parameter has to be to the true value 
depends on the problem. In our experience, for instance, 
the crystal thickness may have a starting value about 
50 ]k off the true value. 

The simulated data were also used to determine 
experimentally the best values of 3 to calculate the 
derivatives with formula (5). As expected, the best value 
for 3 was a fraction of the associated parameter, p. A 
threshold for too small values had to be imposed to avoid 
problems caused by the limited accuracy of computers. It 
appeared that the same fraction and threshold could be 
used for all parameters except for crystal thickness. The 
best convergence was achieved when 

= max(p × 10 -5, 0.01 ) (7) 

for all parameters except the crystal thickness. For the 
crystal thickness, this parameter was optimized to be 

= max(p × 10 -7, 0.0001). (8) 

4. Experimental results 

The multislice least-squares procedure was tested on real 
experimental data for several compounds. Three crystal 
structures will be discussed in this paper. The results will 
be compared with those of either single-crystal X-ray 
diffraction or Rietveld refinements on neutron powder 
diffraction data. They will also be compared with 
kinematical refinements on the same electron diffraction 
data. 

To obtain thin enough areas, the samples were crushed. 
Electron diffraction patterns were taken with a Philips 

Table 2. Atomic model o f  CPCN used for simulations 

Space group: Pnma. a = 7.244, b = 7.821, c = 6.916 A, a = 90, fl = 
90, y = 90 °. 

x y z B (A 2) 

CI 0.1727 0.1556 0.8665 3.98 
C2 0.0361 1/4 0.9919 3.41 
C3 0.0609 1/4 0.1976 3.43 
N 0.0787 1/4 0.3617 4.37 
H 1 0.274 0.099 0.933 4.9 
H2 0.123 0.098 0.752 5.6 
H3 0.909 1/4 0.955 5.6 

CM30ST electron microscope equipped with a field- 
emission gun and operated at 300 keV. A typical spot size 
of 100 A was used to illuminate the thinner areas close to 
the edges of the crystals. The diffraction patterns were 
recorded using a Tietz software package and a 1024 × 
1024 pixel Photometric CCD camera having a dynamic 
range of 12 bits. All data files were corrected for gain 
variations using a standard flatfielding procedure. The 
oversaturated areas of the CCD were not taken into 
account. Although MSLS can compensate for the 
misalignment of the crystal by locating the centre of 
the Laue circle, for initial tests we would like the crystal 
to be orientated along a zone axis as perfectly as possible. 
In diffraction space, this appears as a symmetric pattern 
(e.g. In = l_n for a centrosymmetric crystal). Diffraction 
patterns that were close to this symmetry were selected 
for further processing (see for instance Fig. 1). So, only a 
small misalignment correction is needed, which can be 
determined within the refinement process starting from 
the assumption that the crystal is perfectly aligned. 

The integrated intensity of each reflection was 
determined by enclosing the reflection spot by a 
rectangle, of which the edges were used to estimate the 
background (a new version of the program will also 
handle circular boxes). The number of pixels inside the 
boxes is typically between 20 and 300. By correcting 
with the background from the edge of the box, one 
assumes that the background under the peak behaves 
linearly. The background should be removed since it 
contains information one is not interested in, i.e. from 
inelastic scattering or amorphous layers. These indexed 
intensities were then employed as input for MSLS. 

Three example structures, La3Ni2B2N3 (Zandbergen, 
Jansen, Cava, Krajewski & Peck, 1994), ThPdo.65B47 
(Zandbergen et al., 1995) and C e s C u 1 9 P 1 2  (Cava et al., 
1997) were tested. All of them were also refined using a 
standard kinematical program for comparison. The 
refinement with MSLS was based on exactly the same 
data sets as used for the kinematical refinement. In the 
case of the kinematical refinement, the crystal thickness 
should be estimated since a correction for the curvature 
of the Ewald sphere should be applied. With trial and 
error for several thicknesses, the best thickness was 
assumed to be the one giving the best R value in the 
refinement. 
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Table 3. The structure model o f  La3Ni2B2N3 

Space group: I4/mmm. a = 3.73, b = 3.73, c = 20.67 A, ot = 90,/3 = 
90, V = 90°- 

x v z 

Lal 0 0 0 
La2 1/2 1/2 z 
Ni 1/2 0 1/4 
B 0 0 z 
N1 1/2 1/2 0 
N2 0 0 z 

4.1. La3Ni2B2N3 

For La3Ni2B2N3, diffraction patterns in the [100] and 
[ 110] directions were recorded. A kinematical refinement 
using these electron diffraction data was reported 
previously (Zandbergen et al., 1994). A Rietveld 
refinement on neutron diffraction data from the same 
structure was also performed (Huang et al., 1995). Table 
3 shows the general structure of La3Ni2B2N3 and Table 4 
is a comparison of the refined z coordinates of the two 
published methods and those obtained with MSLS. 
Additional refinement data can be found in Table 5. 
Since the neutron diffraction method is an accepted 
method, we assume the structure determined by this 
method to be the correct one. It is evident that MSLS 
gives within the accuracy of the data exactly the same 

Table 4. Comparison o f  the z coordinates of  La~Ni2B2N3 
refined using either Rietveld methods on neutron data or 
~nenematic or dynamic refinement on electron diffrac- 

tion data 

Neutron Kinematic MSLS 

La2 0.1295 (1) 0.128 (1) 0.127 (2) 
B 0.1946 (2) 0.221 (3) 0.196 (2) 
N2 0.1246 (1) 0.135 (5) 0.117 (3) 

Table 5. Refinement results for La3Ni2B2N3 using MSLS 

The number of  reflections given are observed intensities I > 2a(/) 
which were used in the R-factor calculation. 

Overall (100) (110) 

R (%) 4.1 1.0 8.3 
Thickness (]k) 48 (10) 78 (11) 
h-Laue circle 0.0 0.17 (18) 
k-Laue circle -1 .5  (4) -0 .17  (18) 
l-Laue circle - 1 0  (3) -0 .6  (14) 
No. of  reflections 311 185 126 
Absorption 0.00003 (3) 

results, whereas the kinematic refinement shows a slight 
error. The crystal thicknesses found by MSLS were 
48 (10) A for the [100] zone and 78 (11) A for the [110] 
zone. These values are quite different from the 30 A 
assumed in the kinematical refinement (Zandbergen et 

Fig. 1. Diffraction pattem of  Ce5Cul9P12 in the [001] direction. 
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al., 1994). Fig. 2 shows the intensity as a function of 
thickness for some arbitrary reflections. In the case of the 
kinematic approximation, a linear function is to be 
expected. From Fig. 2, it is clear that the kinematic 
theory is not valid any more. 

4.2. ThPdxBr_2x 

A partial successful kinematical refinement of 
T h P d o . 6 5 B 4 . 7  has been reported (Zandbergen et al., 
1995), in which only the heavier atoms Th and Pd could 
be found. The position of the B atom could not be 
determined, although several diffraction patterns, [100], 
[110], [111] and [120], were incorporated in the 
refinement procedure. Another problem of this structure 
is that the Pd and B positions are not fully occupied. 
From element analysis [electron probe microanalysis 
(EPMA)], it was found (Zandbergen et al., 1995) that in 
this phase the ratio of Th, Pd and B is about 1:0.65:4.7. 
The model proposed is a mixture of a ThB6 and a ThPd3 
structure where B atoms are close to the Pd vacancies and 
vice versa. This is logical from a structural chemistry 
point of view since the occupied Pd and B positions are 
too close together. 

Exactly the same data sets as used for the kinematic 
refinement were used in the MSLS refinement resulting in 
a stable position for B. The determined crystal 
thicknesses of  37 (4), 48 (6), 99 (14) and 61 (15)A for 
the zones [ 100], [ 110], [ 111 ] and [ 120], respectiveb; are 
too large to apply a kinematic theory successfully. In 
order to avoid the usual parameter dependencies, the 
refinement of the occupancies of the Pd and B sites were 
done with fixed temperature factors of 0.9 A 2. Tables 6 

Table 6. The refined model o f  ThPdxB6_e~ 

Space group: Pm3. a = 4.2, b = 4.2, c = 4 .2 /~ ,  ~ = 90, /3 = 90, y = 
90 ° 

x 3, z Occupancy  

Th 0 0 0 1.0 
Pd 1/2 1/2 0 0.28 (2) 
B 1/2 1/2 0.224 (7) 0.7 (3) 

and 7 show the resulting quantities. The occupancies 
refine to the values suggested by EPMA and are in 
agreement with the assumption made in the previous 
paper (Zandbergen et al., 1995). Within the accuracy of 
our experiment, the B positions are identical to those in 
ThBr. 

For this structure, it was essential to include an 
absorption factor in the calculation of the intensities. If 
this factor was omitted, the position of boron was 
directed towards the paladium position, with a resulting z 
coordinate of 0.12. We believe this effect is due to the 
existence of high areas, caused by absorption, around the 
other atoms in the Fourier maps. 

4.3. Ce5CulgP12 
The structure of the third example is known from 

single-crystal X-ray diffraction done on LasCulgP12 
(Cava et al., 1997), as shown in Table 8. In our case, 
the La atoms are substituted by Ce atoms. 

To obtain starting coordinates, eight HREM images of 
the [001] direction were recorded with an increasing 
focus of 5 nm. The through-focus reconstruction techni- 
que (Coene, Janssen, Op De Beeck & Van Dyck, 1992) 
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Table 7. Refinement results for ThPdxB6_2x 

The number of reflections given are observed intensities I > 2o'(/) which were used in the R-factor calculation. 

Overall (100) (110) (111) 

R (%) 3.8 2.8 0.6 9.3 
Thickness (A) 28 (7) 24 (8) 89 (16) 
h-Laue circle 0.0 -0 .2  (18) 0.1 (2) 
k-Laue circle -1.1 (14) 0.2 (18) 1.0 (4) 
/-Laue circle -4 .2  (10) 2.1 (19) -1 .0  (4) 
No. of  reflections 276 93 99 60 
Absorption 0.0009 (5) 

(120) 

2.0 
64 (17) 

0.2 (2) 
-o.4 (4) 

1.4 (3) 
24 

Table 8. The structure model of CesCu19P12 

The z coordinates were taken from the corresponding La compound. 
Space group: P62rn. a = 12.4, b = 12.4, c = 4.0/~, ot = 90,/~ = 90, 
y =  120 ° 

x y z 

Cel 2/3 1/3 0 
Ce2 x 0 1/2 
Cul 0 0 0 
Cu2 x 0 1/2 
Cu3 x y 0 
Cu4 x y 1/2 
Cu5 x 0 0 
P1 x 0 0 
P2 x 0 0 
P3 x y 1/2 

Table 9. The refined coordinates of CesCu19P12 com- 
pared to the coordinates of LasCul9Pl2 determined from 

single-crystal X-ray diffraction 

Coordinate Single La No absorption Absorption 

XCeZ 0.80671 0.82 (5) 0.8112 (9) 
XCuZ 0.28781 0.28 (5) 0.2868 (7) 
XCu3 0.37827 0.37 (5) 0.3789 (6) 
YCu3 0.17247 0.18 (5) 0.1776 (7) 
XCu4 0.63588 0.63 (5) 0.6354 (8) 
YCu4 0.11849 0.12 (5) 0.1165 (8) 
XCu5 0.45084 0.44 (5) 0.4467 (6) 
XpI 0.17683 0.17 (5) 0.1734 (8) 
Xp2 0.62976 0.65 (5) 0.6457 (6) 
Xp3 0.32167 0.63 (5) 0.3171 (4) 
YP3 0.84539 0.12 (5) 0.8329 (5) 

was used to reconstruct the exit wave. Averaging over 
several unit cells and using the space-group symmetries 
gave the image in Fig. 3. The spots indicated in this 
figure were used as the starting position for MSLS. From 
the ratio of  elements in the unit cell and the size of  the 
unit cell, one can easily determine the possible positions 
of  Ce atoms. In order to get five Ce atoms in the unit cell, 
one has to be located at (2/3,  1/3, 0) and the others at 
(x, 0, z), where z = 0 or 1/2. From the phase image, five 
peaks in the unit cell were more prominent than the 
others. These are the Ce atoms. For the Cu and P 

positions, we could not impose such an a prior i  
discrimination condition. 

For this crystal, several diffraction patterns in the [001 ] 
direction were measured. They varied in exposure time 
and crystal thickness. In the first few rounds, the P atoms 
were refined as being Cu atoms. By keeping the Debye-  
Waller factors fixed and refining the occupancies of  the 
atoms, we were able to discriminate between these two 
types.]- To obtain this result, it is essential to take into 

t Note added in proof. Recent experiments show that the Ce atoms can 
be discriminated in the same way. 

Fig. 3. Reconstructed and averaged HREM image of CesCu19P12. The indicated spots in the unit cell were taken as the starting point for the structure 
refinement. 
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Table 10. Refinement results for Ce 5Cu19P12 

The number of  reflections given are observed intensities I > 2a(/) which were used in the R-factor calculation. 

Overall Set 1 Set 2 Set 3 Set 4 Set 5 

R (%) 3.5 1.6 2.0 7.3 
Thickness 119 (2) 125 (2) 132 (2) 
h-Laue circle -0.25 (6) 1.90 (8) 3.12 (9) 
k-Laue circle -1 .12 (6) -1 .16 (6) 0.51 (7) 
l-Laue circle 0.0 0.0 0.0 
No. of  reflections 2476 238 154 306 
Absorption 0.000476 (14) 

3.4 
171 (3) 
-0.18 (3) 
-0 .57 (4) 

0.0 
137 

Set 6 Set 7 Set 8 Set 9 Set 10 

R (%) 3.5 5.5 2.2 4.7 
Thickness (A) 105.4 (17) 174 (2) 157 (3) 110 (2) 
h-Laue circle 1.99 (8) 1.77 (5) 0.06 (4) -0.33 (7) 
k-Laue circle -1 .02 (7) -0 .90  (4) -0.43 (3) -1.98 (9) 
/-Laue circle 0.0 0.0 0.0 0.0 
No. of reflections 348 330 156 264 

1.6 
120 (2) 
-0 .26  (6) 
-1.11 (6) 

0.0 
238 

3.1 
89.3 (19) 

3.46 (14) 
-1.71 (11) 

0.0 
305 

account several data sets from crystals of different 
thicknesses, since each atomic type has its own 
contribution to the exit wave as a function of thickness 
(see Fig. 4). The results of MSLS refinement of the 
structure, with the P atoms at the correct locations, using 
ten of these data sets are listed in Tables 9 and 10. The 
results, within the accuracies of the experiments, are the 
same as those obtained from single-crystal X-ray 
diffraction. Again, it was essential to refine the absorp- 
tion factor. In this case, if it was omitted, the R factor 
indicated an error in the refinement by staying above 12% 
for all data sets. The coordinates of P3 especially gave 
problems. However, if one sets the absorption to zero and 

Fig. 4. The contribution of P, Cu and Ce to the exit wave as a function of  
thickness. The picture is a result of  several multislice simulations. 

starts with the right structure, even then this position 
moves away from the true value. 

The same data sets were used in a kinematical 
refinement, resulting in high R values (> 20%) and 
wrong coordinates (Zandbergen & Jansen, 1997). 

5. Discussion 

A least-squares crystal-structure refinement based on a 
multislice algorithm gives reliable atomic positions. It is 
superior to a procedure based on the kinematical 
diffraction theory, which can only be applied for 
thicknesses up to about 20 A for strong scatterers. The 
use of the multislice algorithm expands the validity of the 
method to the same limits as the multislice algorithm 
itself; it cannot be used for crystals thicker than 150- 
400 A, depending on the composition of the crystal, 
because above that thickness the multislice method tends 
to fail. The main reason for this effect is that the 
absorption included is only a rough approximation of the 
physical absorption and that inelastic scattering is 
neglected. MSLS will benefit from better scattering 
factors like those of Bird & King (1990). Since we are 
aiming to use the same crystal areas as in HREM and 
because crystals with such thicknesses are relatively easy 
to obtain, this is not a real limitation. 

One has to keep in mind that, since the method is valid 
for crystals thinner than "-,150 A only, the determined 
structure may be different from the one in the bulk 
material. Relaxation at the surface of the crystal becomes 
relatively more important for these thin crystals. 

Another problem may arise when the crystal area from 
which electron diffraction data are recorded is not of one 
thickness within the illuminated area, e.g. a wedge- 
shaped crystal. To test its influence, three diffraction 
patterns of the ThPdo.65B4.7 structure in the [100] 
direction were simulated. The thicknesses were respec- 
tively 35.7, 50.4 and 65.1 A. Assuming coherency 
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among the different areas within the spot, the complex 
diffraction amplitudes, Fn, were added to form a 
combined diffraction data set. It appeared that MSLS 
refined it to the right structure with the average thickness 
of 50.4 A, even when the starting z coordinate of B was 
set at 0.4 A from the real value. The same discussion as 
for thickness variation within the illuminated area holds 
for orientation variation. Both subjects are topics for 
further investigation. 

The accuracy of the method is highly dependent on the 
accuracy of the atomic scattering potentials. In the 
examples in this paper, we used Doyle & Turner (1968) 
scattering factors, and the values of Smith & Burge 
(1959) for the missing atomic types. Among other 
possibilities, one can employ the X-ray potentials of 
Cromer & Mann (1968) using the Mott formula to 
transform them to electron scattering factors. One can 
also apply the procedure developed by Tang & Dorignac 
(1995) or Bird & King (1990). In order to test the effect 
of the type of scattering factor on our refinement 
procedure, we simulated diffraction patterns with both 
the Cromer & Mann type and the Doyle & Turner type 
for the ThPdo .6sB4 .7  structure. The correlation between 
these sets decreased from 0.99 for the kinematical 
intensities to 0.96 for intensities for a thickness of 
150 A. This correlation is so high that it is to be expected 
that the experimental errors will overshadow the effect of 
the chosen scattering power. 

Since the multislice calculation that is the basis of 
MSLS is valid for perfect periodic structures only, special 
care has to be taken in the experimental conditions. The 
illuminated area of the crystal should be small in order to 
get a small variation in crystal thickness but not too small 
because too small spot sizes will cause cut-off problems 

since the illuminated part of the crystal is not infinite, 
resulting in very large overlapping spots in the diffraction 
pattern. This effect is used in X-ray powder diffraction to 
determine the particle size. In all calculations, an infinite 
crystal is assumed. 

An amorphous layer may influence the measured 
integrated intensities. In principle, the background 
subtraction should cope with this. However, if the shape 
of the background at the diffraction spot cannot be 
predicted from the surrounding of the spot, the integrated 
intensity may be determined in the wrong way. If the 
amorphous layer contributes as a constant or as a linear 
function underneath a peak, it is easy to be corrected for, 
but failure is to be expected for more complex behaviour 
such as large rings around the central beam. 

To avoid contamination within the microscope, the 
sample may be cooled. An extra advantage of cooling is 
that the Debye-Waller factors become smaller and that 
reflections with higher reflection angles can be observed. 
This enhances the resolution of the data. 

In order to avoid radiation damage of the sample, one 
can use a procedure in which the area of interest is only 
illuminated during the actual recording of the diffraction 
pattern and the rest of the time the beam is at another 
position. With a Philips microscope, a computer- 
controlled beam shift to and from the area of interest 
makes this possible. 

A small problem arises when the crystal thickness and 
temperature factors are refined simultaneously because 
these parameters are highly correlated. Raising both the 
thickness and the temperature factors results in almost 
the same least-squares sum. This is not an artefact of the 
calculation method but lies in the behaviour of nature. 
Increasing the Debye-Waller factor of an atom means a 
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Fig. 5. The R value as function of  thickness generated for a simulated diffraction pattern with several Debye-Waller  factors fitted to a structure 78 A 
thick with B = 4.0 A 2. 
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less peaked scattering potential, which in turn results in a 
less sharply peaked interaction with the incident electron 
wave. Thus, in order to get the same amount of multiple 
scattering, the crystal has to be thicker. To illustrate this, 
diffraction pattems were generated with thickness vary- 
ing from 3 to 150 A for a crystal structure containing 
some La atoms positioned randomly with overall 
temperature factors ranging from 2.0 to 6.0 A. To all 
these patterns, the same structure with thickness of 78 A 
and B = 4.0/~2 w a s  fitted using MSLS to get the scaling 
factors. Fig. 5 shows the resulting R values as a function 
of the thickness, i~alc in this case is the one with a 
thickness of 78 A and B of 4.0 A 2 and 1 °bs is the pattern 
with thickness and B as in the figure. All curves have a 
sharp minimum whose position correlates positively with 
the Debye-Waller factor. The actual R values of the 
minima are almost the same. This means that since 
simulated data are used here with no experimental noise, 
in practice one will find a rather large dependency 
between temperature factor and thickness. So a thickness 
of 50 A and B = 2 A 2 will give about the same results as 
a thickness of 103 A and B = 6 A 2. 

The minima of the curves of Fig. 5 at larger thickness 
are too big to bother about. Of  course, if  the starting 
value of the thickness is too large, MSLS will end up in 
the false minimum; however, in that case the R value is 
far too large and one should mistrust the solution. In our 
experience, an R value below 8% is always near the true 
structure. Of  course, a structure with equal atoms, as 
presented here, is a worst case situation. 

One way to overcome the problem of the high 
correlation between the thickness and the temperature 
factors is to determine the thickness in other ways. For 
very thin crystals, a method to do this was reported 
recently (Tang, Jansen, Zandbergen & Schenk, 1995). 
This method is based on the fact that magnitudes of the 
structure factors, in kinematic approximation, should 
obey certain intensity statistics. Since this procedure is 
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completely independent of  the calculations used in 
MSLS, it can be used for a constrained refinement. This 
will be a subject for further investigation in the future. 
Another approach may be the use of the central beam. 
Since the relative intensity decreases with thickness (see 
Fig. 6) while the sum intensity of the diffracted beams 
increases, this ratio can be easily related to the crystal 
thickness. In principle, MSLS can refine the thickness if  
the intensity of the central beam is measured. However, 
the lack of dynamic range of our CCD camera prevents 
an accurate measurement of  both the central beam and 
the diffracted beams at the same time. 

Van Dyck & Op De Beeck (1997) showed that the 
contribution of the atoms to the diffraction pattern 
depends periodically on the thickness such that at certain 
thicknesses columns of atoms may contribute only 
slightly to the diffracted beams (see Fig. 4). The 
periodicity of the change in scattering potential of  the 
column depends on the atomic types and their density 
along the electron beam. It is obvious that including 
patterns with different thicknesses for the same zone 
direction in MSLS will add more information than is 
available for one thickness only. Especially when 
positions of light atoms next to heavy atoms are required, 
thickness series will give better information of both 
atomic types because they will be dominant in different 
diffraction patterns. 

MSLS is a rather slow procedure. Typical CPU times 
on an IBM-RS6000 58H are 640 s for eight parameters 
using two different diffraction pattems of 50 and 80 A 
thickness, respectively, and using 128 × 128 frames to 
calculate the Fourier transforms of the multislice 
calculation. The bottleneck is the iterative multislice 
algorithm. To calculate all the derivatives of formula (5), 
the multislice calculation has to be repeated N + 1 times, 
where N is the number of parameters to be refined. 
However, the method will be faster than one based on 
CBED as Zuo & Spence (1991) and Tsuda & Tanaka 
(1995) introduced. The calculation of a CBED pattern 
takes more time than a simple diffraction pattern of 
which only the integrated intensities are of interest. 
However, since the computers of  the near future will be 
much faster, this is not a real problem. In principle, it 
should be possible to speed up the procedure by using the 
column approximation (Van Dyck & Op De Beeck, 
1997). A disadvantage of this approach is that not all 
zones and not all crystals can be processed because this 
approach requires that the columns are not closer than 
1A. 

6. Conclusions 

In the examples show here, MSLS proves to be a powerful 
' tool to determine an accurate model of the crystal 

. . . . . . . . . . . .  ~__i , . . ~  = structure. Since the crystals needed are very small, one 50 100 150 200 
Thickness (A) can investigate compounds that cannot be determined by 

Fig. 6. Intensity of the central beam as a function of thickness for the X-rays or neutrons, e.g. mixtures of powders of different 
[100] zone of C%Cu~gPL2. phases or small precipitates in a matrix. The data 
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collection is easy and quick: one does not have to bother 
about the perfect alignment of the crystal since it can be 
refined. This mistilt may even be used to enhance the 
resolution of the data. The mistilt makes it possible to 
observe intensities from reflections with small d spacings 
at one side of the diffraction pattern. Since several areas 
of the same compound can be refined simultaneously, 
MSLS is very powerful in determining light atoms next to 
heavy atoms. 

The maximum thickness will be about 150 A, for 
compounds that contain a major fraction of  strong 
scatterers. Fortunately, by conventional sample prepara- 
tion methods, a thickness range of 50-150A, is 
obtainable easily. In particular, in combination with 
HREM, MSLS is powerful. With HREM, good areas can 
be selected and a rough structure model can be obtained. 
With MSLS, the structure can subsequently be deter- 
mined with a good accuracy. 
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